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1. Introduction
Centrifugal gas compressors are widely used in the natural gas processing industry, as for instance in gas terminals, 
in the loading or unloading of LNG (Liquified Natural Gas) ships, and in the supply of gas distribution networks with 
natural gas at the specified pressure levels (Budinis and Thornhill, 2018; Han et al., 2022; Ma et al., 2019; Torissi 
et al., 2019). Such centrifugal gas compressors are mechanically actuated by gas turbines or by electric motors. 
In case of electric actuation, synchronous or asynchronous (inductance) three-phase motors are commonly used 
(Behegen and Gravdahl, 2008; Gravdahl et al., 2002; Torissi et al., 2015). More recently, the use of multiphase 
motors for the actuation of gas compressors has been also considered (Priestley et al., 2018; Tribelsi and Semail, 
2021; Zhou et al., 2019). Multiphase motors have been employed for long in applications where high power and 
high torque are needed (Echeikh et al., 2016, 2018; Martin et al., 2016). By distributing the required power in a 
large number of phases, the power load of each individual phase is reduced (Bernudes et al., 2020; Li et al., 2020; 
Saad et al., 2019). Consequently, the associated power electronics (voltage source converters) function also at 
smaller voltages and currents. Another feature is that the cumulative rates of power in multiphase machines can be 
raised without stressing the connected converters (Khadar et al., 2021; Morawiec and Wilczynski, 2022; Morawiec 
et al., 2020). Furthermore, the frequency of PWM inputs can be increased while the amplitude of such inputs can 
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Abstract:  The article proposes a nonlinear optimal control method for the dynamic model of a gas centrifugal compressor being actuated by a 
five-phase induction motor (5-phase IM). To achieve high torque and high power in the functioning of gas compressors, 5-phase IM 
appear to be advantageous in comparison to three-phase synchronous or asynchronous electric machines. The dynamic model of the 
integrated compression system, which comprises the gas compressor and the 5-phase IM, is first written in a nonlinear and multivariable 
state-space form. It is proven that the electrically driven gas-compression system is differentially flat. Next, this system is approximately 
linearised around a temporary operating point that is recomputed at each sampling interval. The linearisation is based on first-order 
Taylor series expansion and uses the computation of the Jacobian matrices of the state-space model of the integrated system. For the 
linearised state-space description of the compressor and 5-phase IM, a stabilising optimal (H-infinity) feedback controller is designed. 
This controller achieves a solution to the nonlinear optimal control problem of the compressor and 5-phase IM system under model 
uncertainty and external perturbations. The feedback gains of the controller are computed by solving an algebraic Riccati equation at 
each iteration of the control method. Lyapunov analysis is used to demonstrate global stability for the control loop. Additionally, the 
H-infinity Kalman filter is used as a robust state estimator, which allows for implementing sensorless control for the gas compression 
system.
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be reduced, and this signifies avoidance of mechanical vibrations during the functioning of the motor. Multiphase 
motors are also fault tolerant because such machines remain functional even if failures affect certain phases (Arahal 
et al., 2010; Riveros et al., 2018).

Five-phase PM (Permanent Magnet) synchronous motors and five-phase asynchronous induction motors are 
among the types of multiphase motors one can consider for the actuation of gas compressors (Gonzalez-Prieto 
et al., 2018; Xiong et al., 2020). For ensuring the reliable performance of such multiphase motors, elaborated 
nonlinear control methods should be developed (Arahal et al., 2020a, 2020b; Arashloo et al., 2019). To this end, 
the use of model-predictive control (MPC), backstepping control, and sliding-mode control methods has been 
proposed (Echeikh et al., 2020; Xiang and Li, 2022). Moreover, fault diagnosis methods for gas compressors 
have been developed (Lu et al., 2016; Mochammad et al., 2021; Soleymani et al., 2019). In the present article, a 
novel nonlinear optimal control approach has been developed for an integrated gas compression system that is 
electrically actuated by a five-phase induction motor (5-phase IM). The dynamic model of the gas compressor and 
5-phase IM undergoes first approximate linearisation around the temporary operating point (x*, u*) using first-order 
Taylor series expansion and the computation of the associated Jacobian matrices (Basseville and Nikiforov, 1993; 
Rigatos and Tzafestas, 2007; Rigatos and Zhang, 2009). The linearisation process takes place at each sampling 
instance and the linearisation point is defined by the present value of the system’s state vector x* and by the last 
sampled value of the control inputs vector u*. The modelling error that is due to the truncation of higher-order terms 
from the Taylor series is considered to be a perturbation that is asymptotically compensated by the robustness of 
the control algorithm. For the approximately linearised model of the gas-compression system, a stabilising H-infinity 
feedback controller is designed. This H-infinity controller achieves the solution of the optimal control problem under 
model uncertainty and external perturbations.

The proposed optimal (H-infinity) controller represents a min–max differential game taking place between: (i) the 
control inputs of the gas compression system that try to minimise a cost function containing a quadratic term of the 
state vector’s tracking error; and (ii) the model uncertainty and exogenous perturbation terms that try to maximise this 
cost function. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be solved 
repetitively at each time-step of the control method (Rigatos, 2015, 2016; Rigatos and Karapanou, 2020; Rigatos 
et al., 2022). The global stability properties of the control scheme are proven through Lyapunov analysis. First, it is 
demonstrated that the control loop of the gas compressor and the 5-phase induction motor satisfies the H-infinity 
tracking performance criterion. This signifies disturbance rejection and compensation for model uncertainty and 
exogenous perturbations (Rigatos, 2011; Toussaint et al., 2000). Moreover, under moderate conditions, the global 
asymptotic stability properties of the control scheme are proven (Rigatos, 2016). The proposed nonlinear optimal 
control method achieves fast and accurate tracking of reference setpoints under moderate variations of the control 
inputs. Furthermore, to perform state estimation-based control without the need to measure the entire state vector 
of the gas-compression system, the H-infinity Kalman filter has been used as a robust state estimator.

The proposed nonlinear optimal control method is novel in comparison to past attempts for solving the optimal 
control problem for nonlinear dynamical systems (Rigatos, 2015; Rigatos and Karapanou, 2020). Unlike past 
approaches, in the new nonlinear optimal control method linearisation is performed around a temporary operating 
point, which is defined by the present value of the system’s state vector and by the last sampled value of the control 
inputs vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation, which 
is used for computing the feedback gains of the controller, is new, and so is the global stability proof for this control 
method. Compared to nonlinear model-predictive control (NMPC), which is a popular approach for treating the 
optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability 
and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with 
multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable 
to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations 
(SDRE). The SDRE approaches can be applied only to dynamical systems that can be transformed to the linear 
parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal 
control schemes that use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series 
expansions. The stability properties of the optimal control approaches that are based on Galerkin series expansion 
are still unproven. Finally, it is noted that the article’s results have an industrial perspective and the potential for use 
in industrial applications (Durantay et al., 2019a, 2919b; Singhal, 2014; Tessarolo et al., 2011; Verma et al., 2017).

The structure of the article is as follows: in Section 2, an analysis of the dynamic model of the gas compressor 
that is actuated by a 5-phase IM is provided. In Section 3, the differential flatness properties of the integrated gas 
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Fig. 1. Diagram of the integrated gas compression system that comprises a centrifugal gas compressor actuated by a 5-phase IM. 5-phase IM, five-
phase induction motor. Authors’ own work.

compression system are proven. In Section 4, the state-space model of the gas-compression system undergoes 
approximate linearisation using first-order Taylor series expansion and computation of the associated Jacobian 
matrices. In Section 5, a stabilising H-infinity feedback controller is designed for the dynamic model of the gas-
compression system. In Section 6, the stability properties of this control scheme are proven through Lyapunov 
analysis. Besides, the state estimation problem for the gas compression system is treated with the use of the 
H-infinity Kalman filter. In Section 7, simulation tests are presented concerning the nonlinear optimal control of the 
gas-compression system. Finally, in Section 8, concluding remarks are stated.

2. Dynamic Model of the Gas Compressor and 5-phase IM System
The diagram of the gas compressor that is actuated by a 5-phase IM is shown in Figure 1. Through the inlet valve, 
which is denoted by the gain Ki, the gas is fed into the inlet tank, which is described by pressure variable Pi. Next, 
the gas passes through the compressor at a mass flow rate, which is denoted as m. The rotational motion of the 
compressor is due to the torque, which is provided by a 5-phase IM. The angular speed of the compressor and 
of the 5-phase IM is defined as ω. The gas that comes out of the compressor is stored in the outlet tank, and the 
pressure at which this storage is maintained is denoted as Po. In the output of the outlet tank, there is an outlet valve, 
which is described by gain Ko. Moreover, it is possible to recycle part of the gas of the outlet tank back to the inlet 
tank, through a valve that is denoted by gain Kr, as mentioned by Torissi et al. (2019).

The state vector of the compressor is defined as (Torissi et al. [2019]):

 x = [x1,x2,x3,x4,x5]T = [Pi,Po,m,w,mr]T (1)

whereas the state equations of the centrifugal compressor are given by:

 

 (2)

The atmospheric pressure is denoted as patm. The compressor’s characteristic function is denoted as p(x3,x4) and 
is taken to be a polynomial function of state variables x3 and x4. Equivalently, the compressor’s torque is denoted 

198



Rigatos et al.

as τc(x3,x4) and is also taken to be a polynomial function of state variables x3 and x4. The torque that enables the 
rotational motion of the compressor is denoted as τd and coincides with the electromagnetic torque of the 5-phase 
IM. The 5-phase IM that is fed by a voltage source inverter is shown in Figure 2.

The polynomial approximations of functions π(m,ω) and τ(m,ω) are:
(a) p(x3,x4) = (a0 + a1x3 +

 ), where ai,i = 0,1,2,3 and bi,i = 0,1,2,3 are constants.

(b)  ), where ci,i = 0,1,2,3 and di,i = 0,1,2,3 
are constants.

The state vector of the 5-phase IM is given by Echeikh et al. (2018), Echeikh et al. (2016), and Martin et al. 
(2016), in terms of the following expression:

 x = [ωr, x6, x7, x8, x9, x10, x11]T = 
 = [ωr, is,a, is,β, ψr,a, ψr,β, is,x, is,y]T (3)

In this notation, is,a,is,β and is,x,is,y describe the current variables of the stator after applying a generalised Clarke 
transformation to the five-phase currents vector of the motor. Moreover, ψr,a and ψr,β are the coefficients of the 
magnetic flux of the rotor (Echeikh et al., 2016, 2018; Martin et al., 2016). Next, the state equations that describe 
the dynamics of the 5-phase IM are given to be the following:

 ω̇r = m1Te − m1TL − m2ωr 
 ẋ6 = aArx8 + aωrx9 − bx6 + cvs,a 
 ẋ7 = aArx9 − aωrx8 − bx7 + cvs,b 
 ẋ8 = −Arx8 − ωrx9 + MArx6 (4)

 ẋ9 = −Arx9 + ωrx8 + MArx7 ẋ10 = dx10 + evs,x ẋ11 = dx11 + evs, y 

The electromagnetic torque of the five-phase motor is given by:

 
 (5)

The coefficients of the dynamic model of the 5-phase IM are: ,

 . 

Fig. 2. Diagram of the 5-phase induction motor driven by a voltage source inverter. Authors’ own work.
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In the above coefficients, Rr and Lr are, respectively, the resistance and the inductance of the rotor, Rs and Ls are, 
respectively, the resistance and the inductance of the stator, M is the mutual inductance between the stator and the 
rotor, and L1s is the leakage induction of the stator.

It is noted the above model of the 5-phase induction motors has been based on known reference frames 
transformations that are used for multiphase electric machines. Thus, using Clarke’s transformation for five-phase 
systems, the 5-phase motor can be described in terms of the couple of two-phase frames αb and xy, where  
(Echeikh et al., 2016; Gonzalez-Prieto et al., 2018).

 

 (6)

By connecting the gas compressor with the 5-phase IM, the turn speed of the motor coincides with the one 
of the compressor, implying that ω = ωr. Besides, the torque τd that activates the compressor coincides with the 
electromagnetic torque of the motor, implying that τd = Te. Consequently, it holds that

  (7) 

Thus, the integrated model of the gas compression system becomes:

 

 (8)

Moreover, using the following notation about the aggregate control inputs vector of the system:

 u = [u1, u2, u3, u4, u5, u6]T = 
 = [Ki, Kr, vs,a, vs,b, vs,x, vs,y]T (9)

the state-space model of the integrated gas compressor and 5-phase IM can be also written in the form

 
 (10)
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The integrated system can be also written in the nonlinear affine-in-the-input state-space form

 ẋ = f (x) + g(x)u (11)

where x∈R11×1, f (x)∈R11×1, g(x)∈R11×6, and u∈R6×1.

3. Differential Flatness Properties of the Integrated Gas-Compression  
System

It will be proven that the integrated gas-compression system that consists of a gas compressor serially connected 
to a 5-phase IM is differentially flat. The differential flatness property signifies that all state variables and the control 
inputs of the system are differential functions of its flat outputs. The flat outputs of the system are:

 Y = [y1, y2.y3, y4, y5, y6]T ⇒Y = [x1, x4, x8, x9, x10, x11]T  (12)

From the eighth row of the state-space model of Eq. (10), one solves for x6. It holds that

 
 (13)

which signifies that x6 is a differential function of the flat outputs of the system. Next, from the ninth row of the  
state-space model of Eq. (10) one solves for x7. This gives

 
 (14)

which signifies that x7 is a differential function of the flat outputs of the system. Next, from the sixth row of the  
state-space model of Eq. (10) one solves for u3. It holds that

 
 (15)

which signifies that u3 is a differential function of the flat outputs of the system. Moreover, from the seventh row of 
the state-space model of Eq. (10), one solves for u4. This gives

  (16)

which signifies that u4 is a differential function of the flat outputs of the system. Additionally, from the10th row of the 
state-space model of Eq. (10), one solves for u5. This gives

 
 (17)

which signifies that u5 is a differential function of the flat outputs of the system. Furthermore, from the 11th row of the 
state-space model of Eq. (10), one solves for u6. This gives

 
 (18)

Additionally, from the fourth row of the state-space model of Eq. (10), one solves for x3. This gives
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  (19)

where it has been used that τ(x3,x4) is a polynomial function of x3 and x4, for instance τ(x3,x4) =

  ). 

Thus, the first row of Eq. (19) gives a polynomial function of x3 and as a consequence the second row of  
Eq. (19) shows that x3 is a differential function of the flat outputs of the system.

Next, from the third row of the state-space model of Eq. (10), one solves for x2. This gives

 
 (20)

which signifies that x2 is a differential function of the flat outputs. Moreover, from the third row of the state-space 
model of Eq. (10), one solves for x5. This gives

 
 (21)

which signifies that x5 is a differential function of the flat outputs. Furthermore, from the first row of the state-space 
model of Eq. (10), one solves for u1. This gives

 
 (22)

which signifies that u1 is a differential function of the flat outputs. Additionally, from the fifth row of the state-space 
model of Eq. (10), one solves for u2. This gives

 
 (23)

which signifies that u2 is a differential function of the flat outputs. According to the previous analysis, all state 
variables and the control inputs of the integrated system that comprise a gas compressor actuated by a 5-phase 
IM can be expressed as differential functions of the system’s flat outputs. Consequently, the entire system is 
differentially flat.

The differential flatness property is an implicit proof of the system’s controllability and allows also for computing 
feasible setpoints for all state variables of the system. First, one selects setpoints for the flat outputs of the gas 
compression system x1, x4, x8, x9, x10, x11 in an unconstrained manner. Next, setpoints are selected for the rest of the 
state vector elements x2, x3, x5, x6, x7 under the constraint that these state variables are differential functions of the 
flat outputs.

4. Approximate Linearisation of the Dynamic Model of the Gas-Compression 
System

The dynamic model of the gas-compression system undergoes approximate linearisation around the temporary 
operating point (x*, u*), where x* is the present value of the system’s state vector and u* is the last sampled value of 
the control inputs vector. The linearisation takes place at each sampling instance and is based on first-order Taylor 
series expansion. The modelling error that is due to truncation of higher-order terms from the Taylor series is viewed 
as a perturbation that is asymptotically compensated by the robustness of the control algorithm.
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The initial nonlinear model of the gas-compression system is in the nonlinear affine-in-the-input state-space 
form:

 ẋ = f (x) + g(x)u x∈R11×1, f (x)∈R11×1, g(x)∈R11×6, u∈R6×1 (24)

After linearisation with the use of a first-order Taylor series expansion, it is written in the equivalent linearised 
form

 ẋ = Ax + Bu + d˜ (25)

where d˜ is the cumulative disturbances vector, which may comprise: (i) the modelling error due to truncation of 
higher-order terms from the Taylor series, (ii) exogenous perturbations, and (iii) sensor measurement noise of any 
distribution. Matrices A and B are the Jacobian matrices of the system, which are given by

 A = ∇x[ f (x) + g(x)u] |(x*, u*) ⇒ A = ∇x[ f (x)] |(x*, u*) + ∇x[g1(x)u] |(x*, u*) + ∇x[g2(x)u] |(x*, u*) + 

 + ∇x[g3(x)u] |(x*, u*) + ∇x[g4(x)u] |(x*, u*) + ∇x[g5(x)u] |(x*, u*) + ∇x[g6(x)u] |(x*, u*) (26)

 B = ∇u[ f (x) + g(x)u] |(x*, u*) ⇒ B = g(x) |(x*, u*) (27)

where gi(x), i = 1, 2,···,6 are the column vectors that constitute the control inputs gain matrix g(x) = [g1(x), g2(x), g3(x), 
g4(x), g5(x), g6(x)]T.

This linearisation approach that has been followed for implementing the nonlinear optimal control scheme 
results into a quite accurate model of the system’s dynamics. Consider for instance the following affine-in-the-input 
state-space model:

 ẋ = f (x) + g(x)u ⇒ 

 ẋ = [ f (x*) + ∇x f (x) |x* (x − x*)] + [g(x*) + ∇x g(x) |x* (x − x*)]u* + g(x*)u* + g(x*)(u − u*) + d˜
1⇒  

 ẋ = [∇x f (x) |x* + ∇x g(x) |x* u*] x + g(x*)u − [∇x f (x) |x* +∇x g(x) |x* u*] x* + f (x*) + g(x*)u* + d˜
1 (28)

where d˜
1 is the modelling error due to truncation of higher-order terms in the Taylor series expansion of f(x) and g(x). 

Next, by defining A = [∇x  f (x) |x* + ∇x g(x) |x* u*], B = g(x*) one obtains

 ẋ = Ax + Bu − Ax* + f (x*) + g(x*)u* + d˜
1 (29)

Moreover, by denoting d˜ = −Ax* + f (x*) + g(x*)u* + d˜
1 about the cumulative modelling error term in the Taylor series 

expansion procedure, one has

 ẋ = Ax + Bu + d˜ (30)

which is the approximately linearised model of the dynamics of the system of Eq. (25). The term f (x*) + g(x*)u* is  
the derivative of the state vector at (x*,u*), which is almost annihilated by −Ax*.

Next, the elements of the Jacobian matrices are computed. First, the computation of the Jacobian matrix  
∇x[ f (x)] |(x*,u*) is performed.

First row of the Jacobian matrix ,

  

Second row of the Jacobian matrix ,
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Third row of the Jacobian matrix ,

  

where using that ) it holds that

  

  

Fourth row of the Jacobian matrix 

where using that ) it holds that

Fifth row of the Jacobian matrix  = 0 for i = 1,2,···,11

Sixth row of the Jacobian matrix  = 0,

Seventh row of the Jacobian matrix  = 0,

Eighth row of the Jacobian matrix  = 0,

Ninth row of the Jacobian matrix  = 0,

Tenth row of the Jacobian matrix  = 0, for i ≠ 10, and .

Eleventh row of the Jacobian matrix  = 0, for i ≠ 11, and .

Computation of the Jacobian matrix ∇x g1(x) |(x*,u*).
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 (31)

Computation of the Jacobian matrix ∇x g2(x) |(x*,u*).

 

 (32)

Besides, for the rest of the Jacobian matrices of the columns of the control inputs gain matrix g(x), it holds 
that

 ∇xg3(x) |(x*,u*) = 0∈R11×11 ∇xg4(x) |(x*,u*) = 0∈R11×11 

 ∇xg5(x) |(x*,u*) = 0∈R11×11 ∇xg6(x) |(x*,u*) = 0∈R11×11 (33)

5.	 Design	of	an	H-Infinity	Nonlinear	Feedback	Controller
5.1.  Equivalent linearised dynamics of the 5-phase induction motor-driven gas compressor
After linearisation around its current operating point, the dynamic model for the gas compressor that is actuated by 
a 5-phase IM is written as (Rigatos [2016], Rigatos and Karapanou [2020]):

 ẋ = Ax + Bu + d1 (34)

where parameter d1 stands for the linearisation error in the model of the integrated system of the gas compressor 
and the 5-phase IM that was given previously in Eq. (25).

The reference setpoints for the state vector of the aforementioned dynamic model are denoted by xd 

 ]. Tracking of this trajectory is achieved after applying the control input u*. At every time-instant, the 
control input u* is assumed to differ from the control input u appearing in Eq. (34) by an amount equal to ∆u, as can 
be expressed in the following form:

 u* = u + ∆u 
 ẋd = Axd + Bu* + d2 (35)
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The dynamics of the controlled system described in Eq. (34) can be also written as

 ẋ = Ax + Bu + Bu* − Bu* + d1 (36)

and by denoting d3 = −Bu* + d1 as an aggregate disturbance term one obtains

 ẋ = Ax + Bu + Bu* + d3 (37)

By subtracting Eq. (35) from Eq. (37) one has

 ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (38)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as d˜ = d3 − d2, the tracking error 
dynamics becomes

 ė = Ae + Bu + d˜ (39)

The above linearised form of the model of the gas compressor that is actuated by the 5-phase IM can be 
efficiently controlled after applying an H-infinity feedback control scheme.

5.2.	 The	nonlinear	H-infinity	control
The initial nonlinear model of the system gas compressor that is actuated by the 5-phase IM is in the form

 ẋ = f (x,u) x∈Rn, u∈Rm (40)

Linearisation of the model of the integrated system of the gas compressor and 5-phase IM is performed at each 
iteration of the control algorithm around its present operating point (x*,u*) = (x(t),u(t − Ts)). The linearised equivalent 
of the system is described by

  (41)

where matrices A and B are obtained from the computation of the previously defined Jacobians and vector d˜ denotes 
disturbance terms due to linearisation errors. The problem of disturbance rejection for the linearised model that is 
described by

 ẋ = Ax + Bu + Ld˜ and y = Cx, (42)

where x∈Rn, u∈Rm, d˜∈Rq, and y∈Rp, cannot be handled efficiently if the classical LQR (Linear Quadratic Regualator) 
control scheme is applied. This is because of the existence of the perturbation term d˜. The disturbance term d˜, apart from 
modelling (parametric) uncertainty and external perturbation terms, can also represent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for setpoint tracking by the system’s state 
vector and simultaneous disturbance rejection, considering that the disturbance affects the system in the worst 
possible manner. The disturbances’ effects are incorporated in the following quadratic cost function (Rigatos, 2016; 
Rigatos and Karapanou, 2020):

  (43)

The significance of the negative sign in the cost function’s term that is associated with the perturbation variable 
d˜(t) is that the disturbance tries to maximise the cost function J(t) whereas the control signal u(t) tries to minimise it. 
The physical meaning of the relation given above is that the control signal and the disturbances compete to each 
other within a min–max differential game. This problem of min–max optimisation can be written as minumaxd˜J(u,d˜).

The objective of the optimisation procedure is to compute a control signal u(t), which can compensate for the worst 
possible disturbance, that is externally imposed to the system of the gas compressor that is actuated by the 5-phase 
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IM. However, the solution to the min–max optimisation problem is directly related to the value of the parameter ρ. This 
means that there is an upper bound in the disturbances magnitude that can be annihilated by the control signal.

5.3.	 Computation	of	the	feedback	control	gains
For the linearised system given by Eq. (42) the cost function of Eq. (43) is defined, where coefficient r determines 
the penalisation of the control input and weight coefficient ρ determines the reward of the disturbances’ effects. 
It is assumed that: (i) the energy that is transferred from the disturbances signal d˜(t) is bounded, that is 

, (ii) matrices [A,B] and [A,L] are stabilisable, and (iii) matrix [A,C] is detectable. In the case 
of a tracking problem the optimal feedback control law is given by (Rigatos, 2016; Rigatos and Karapanou, 2020)

 u(t) = −Ke(t) (44)

with e = x − xd considered as the tracking error, and  where P is a positive definite symmetric matrix. As 
it will be proven in Section 6, matrix P is obtained from the solution of the Riccati equation

  (45)

where Q is a positive semi-definite symmetric matrix. The worst case disturbance is given by

  (46)

The solution of the H-infinity feedback control problem for the system of the gas compressor that is actuated by 
the 5-phase IM and the computation of the worst case disturbance that the related controller can sustain, comes 
from superposition of Bellman’s optimality principle when considering that the compression system is affected by 
two separate inputs: (i) the control input u and (ii) the cumulative disturbance input d˜(t). Solving the optimal control 
problem for u, that is for the minimum variation (optimal) control input that achieves elimination of the state vector’s 
tracking error, we obtain u = −1

rBTPe.
Equivalently, solving the optimal control problem for d˜, that is for the worst case disturbance that the control loop 

can sustain, we obtain .
The diagram of the considered control loop for the system of the integrated system that comprises a gas 

compressor driven by a 5-phase IM is depicted in Figure 3.

Fig. 3. Diagram of the control scheme for the integrated system of the gas compressor driven by a 5-phase IM. 5-phase IM, five-phase induction 
motor. Authors’ own work.
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Remark 1: Comparing to other nonlinear control methods that one could have considered for the gas compressor 
that is driven by the 5-phase IM, the presented nonlinear optimal (H-infinity) control approach exhibits specific 
advantages.

(a) In comparison to global linearisation-based control schemes (such as Lie-algebra-based control and flatness-
based control), the nonlinear optimal control approach does not make use of complicated changes of state 
variables (diffeomorphims) and transformations of the system’s state-space description. The computed 
control inputs are applied directly on the initial nonlinear state-space model of the gas compressor that is 
driven by the 5-phase IM without the intervention of inverse transformations and thus without coming against 
the risk of singularities.

(b) In comparison to NMPC and to classical MPC, the global stability properties of the nonlinear optimal control 
method are ensured. It is known that the performance and convergence to optimum of the iterative search of 
NMPC depends on parameter values’ selection and on initialisation (multiple shooting methods).

(c) It is noteworthy that the use of the nonlinear optimal control method is not constrained to dynamical systems that 
have a specific state-space form (input–output-linearised, canonical, strict-feedback, or other). For instance, 
in sliding-mode control, unless the system is written in the input–output linearised form, there is no systematic 
procedure for defining sliding surfaces. Moreover, in backstepping control, unless the system is found in the 
strict-feedback (backstepping integral) form, there is no standard procedure for computing the backstepping 
control signal.

(d) In comparison to PID-type control, the nonlinear optimal control method is of proven global stability, does 
not rely on any heuristics for selecting the controller’s feedback gains, and has global stability properties 
that are not affected by any changes in the operating points. It is known that the performance of PID 
(Proportional Integral Derivative) controllers depends on empirical tuning, which is performed around local 
operating points.

(e) Unlike multiple models-based feedback control, the nonlinear optimal control method relies on the use of one 
single linearisation point and avoids the need for defining empirically multiple fixed points. It also needs to 
solve only one Riccati equation and does not come against the solution of LMIs (Linear Matrix Inequalities). 
Consequently, the nonlinear optimal control method does not come against dimensionality issues due to an 
exponential growth of the parameters of the control problem. As a consequence, the method’s computational 
complexity remains moderate.

6.	 Lyapunov	Stability	Analysis
6.1.	 Stability	proof
Through Lyapunov stability analysis, it will be shown that the proposed nonlinear control scheme assures H∞ tracking 
performance for the system of the gas compressor that is driven by a 5-phase IM, and that in case of bounded 
disturbance terms asymptotic convergence to the reference setpoints is achieved. The tracking error dynamics for 
the gas compressor that is driven by the 5-phase IM is written in the form

 ė = Ae + Bu + Ld˜ (47)

where in the compressor and 5-phase IM motor case L = ∈R11×11 is the disturbance inputs gain matrix. Variable d˜ 

denotes model uncertainties and external disturbances of the model of the gas-compression system. The following 
Lyapunov equation is considered (Rigatos, 2016; Rigatos and Karapanou, 2020):

  (48)

where e = x − xd is the tracking error. By differentiating with respect to time, one obtains

 
 (49)
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 (50)

  (51)

The previous equation is rewritten as

  (52)

Assumption: For a given positive definite matrix Q and coefficients r and ρ, there exists a positive definite matrix 
P, which is the solution of the following matrix equation:

  (53)

Moreover, the following feedback control law is applied to the system:

  (54)

By substituting Eq. (53) and Eq. (54), one obtains

  (55)

  (56)

which, after intermediate operations, gives

  (57)

or, equivalently,

  (58)

Lemma: The following inequality holds

  (59)

Proof: The binomial (  is considered. Expanding the left part of the above inequality, one obtains

 
 (60)

The following substitutions are carried out: a = d˜ and b = eTPL; and the previous relation becomes

  (61)

Eq. (61) is substituted in Eq. (58) and the inequality is enforced, thus giving

  (62)

Eq. (62) shows that the H∞ tracking performance criterion is satisfied. The integration of V˙ from 0 to T gives
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 (63)

Moreover, if there exists a positive constant Md > 0 such that

  (64)

then one obtains

  (65)

Thus, the integral  is bounded. Moreover, V (T) is bounded and from the definition of the Lyapunov 
function V in Eq. (48) it becomes clear that e(t) will be also bounded since e(t) ∈ Ωe = {e|eTPe ≤ 2V (0) + ρ2Md}. 
According to the above and with the use of Barbalat’s lemma, one obtains limt→∞ e(t) = 0.

After following the stages of the stability proof, one arrives at Eq. (62), which shows that the H-infinity tracking 
performance criterion holds. By selecting the attenuation coefficient ρ to be sufficiently small and in particular 
to satisfy ρ2 < ||e||2Q /||d

˜||2, one has that the first derivative of the Lyapunov function is upper bounded by 0. This 
condition holds at each sampling instance and consequently global stability for the control loop can be concluded.

6.2.	 Robust	state	estimation	with	the	use	of	the	H∞ Kalman	filter
The control loop has to be implemented with the use of information provided by a small number of sensors and by 
processing only a small number of state variables. To reconstruct the missing information about the state vector 
of the system of the gas compressor that is driven by a 5-phase IM, it is proposed to use a filtering scheme and, 
based on it, to apply state estimation-based control (Rigatos, 2015, 2016). By denoting as A(k), B(k), and C(k) the 
discrete-time equivalents of matrices A, B, and C of the linearised state-space model of the system, the recursion of 
the H∞ Kalman filter for the model of the electrically actuated compressors’ system can be formulated in terms of a 
measurement update and a time update parts.

Measurement update:

 D(k) = [I − θW(k)P−(k) + CT(k)R(k)−1C(k)P−(k)]−1 

 K(k) = P−(k)D(k)CT(k)R(k)−1 (66)

  x̂(k) = x̂−(k) + K(k)[y(k) − Cx̂−(k)] 

Time update:

 x̂−(k + 1) = A(k)x(k) + B(k)u(k) 
 P−(k + 1) = A(k)P−(k)D(k)AT(k) + Q(k) (67)

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix P−(k)−1 − θW(k) + CT(k)
R(k)−1C(k) will be a positive definite. When θ = 0, the H∞ Kalman filter becomes equivalent to the standard Kalman 
filter. One can measure only a part of the state vector of the system of the 5-phase IM-driven gas compressor, and 
can estimate through filtering the rest of the state vector elements that are associated with the turn speed of the 
compressor or with magnetic flux variables of the stator of the 5-phase IM. Moreover, the proposed Kalman filtering 
method can be used for sensor fusion purposes.

7. Simulation Tests
To test the performance of the proposed nonlinear optimal control method, simulation experiments have been 
carried out. To implement the nonlinear optimal control method, the algebraic Riccati equation of Eq. (53) had to 
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be solved at each sampling period with the use of Matlab’s aresolv() function. It has been confirmed that the time-
interval that is needed for solving this Riccati equation is significantly smaller than the sampling period, which was 
Ts = 0.01 s. Indicative values about the parameters of the 5-phase IM-driven gas compressor have been as follows: 
(a) gas compressor: ai = 1.5, Vi = 10.2 m3, a0 = 4.5, Vo = 4.0 m3, patm = 1.1 atm, Ko = 0.1, L = 1.0, and v = 0.01; (b) 5-phase 
IM: P = 4, J = 2.0 kg·m2, Rs = 0.16Ω, Rr = 0.10Ω, Ls = 20.4mH, Lr = 20.3 mH M = 6.4 mH, and L1s = 0.1 mH. To implement 
state estimation-based control, the H-infinity Kalman filter has been used as a robust state estimator. The obtained 
results come from three different simulation tests (each test is associated with different setpoints) and are depicted 
in Figures 4–9. The state variables’ values are normalised and presented in a per-unit system. The real values of the 
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state variables of the integrated gas-compression system are shown in blue colour and the associated setpoints are 
depicted in red, whereas the estimated values that are provided by the H-infinity Kalman filter are plotted in green. 
Through the simulation experiments, it has been confirmed that the nonlinear optimal control approach achieves 
fast and accurate tracking of setpoints by the state variables of the 5-phase IM-driven gas compressors under 
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moderate variations of the control inputs. The variations of the Lyapunov function of the control system of the gas 
compressor and the 5-phase IM are also shown in the diagrams given in Figure 10. The global stability properties 
of the nonlinear optimal control method are confirmed once again. Finally, using the inverse of the Clarke’s/Park’s 
transformation matrix of Eq. (6), the diagrams of Figure 11 have been obtained, depicting the variation of the phase 
currents of 5-phase IM.
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To elaborate on the above-noted diagrams and on the fine tracking performance and the global stability 
properties of the nonlinear optimal control method for the electrically actuated gas compressor, the following tables 
are also provided: (i) Table 1 providing data about the accuracy of tracking of setpoints by the state variables of 
the gas compression system under an exact dynamic model, (ii) Table 2 providing data about the accuracy of 
state estimation that is achieved by the H-infinity Kalman filter, and (iii) Table 3 providing data about the speed of 
convergence of the state variables of the gas compression system to the targeted setpoints.
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Fig. 11. Variation of the phase currents of the 5-phase IM: (a) when tracking setpoint 1, (b) when tracking setpoint 2. Authors’ own work.
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8. Conclusions
The article has addressed the nonlinear optimal control problem for the integrated gas-compression system that 
comprises a gas compressor that is actuated by a 5-phase IM. First, the state-space model of the integrated gas-
compression system has undergone approximate linearisation with the use of first-order Taylor series expansion 
and through computation of the associated Jacobian matrices. The linearisation process is repeated at each 
sampling instance around a temporary operating point that is defined by the present value of the system’s state 
vector and by the last sampled value of the control inputs vector. For the linearised model of the system, a 
stabilising H-infinity feedback controller is designed. To select the controller’s gains, an algebraic Riccati equation 
is repetitively solved at each iteration of the control algorithm. The global stability properties of the control scheme 
are proven through Lyapunov analysis. To implement state estimation-based control without the need to measure 
the entire state vector of the gas-compression system, the H-infinity Kalman filter has been used as a robust state 
estimator.

The proposed nonlinear optimal control method exhibits specific advantages in comparison to other nonlinear 
control schemes one could have considered for the dynamic model of a centrifugal gas compressor with actuation 
from a 5-phase IM. Unlike global linearisation-based control schemes, as for instance Lie-algebra-based control, 
the nonlinear optimal control method avoids complicated transformations of state-space descriptions and changes 
of state variables and does not come against singularity issues. Unlike nonlinear model-predictive control schemes, 
the nonlinear optimal control method is of proven global stability. Unlike sliding-mode control and backstepping 
control approaches, the application of the nonlinear optimal control method does not have as a prerequisite the 
state-space model of the system to be found into a specific form (for instance the input–output linearised or the 
triangular form). Unlike PID control schemes, the nonlinear optimal control method is of ensured global stability 
and the selection of the gains of the optimal controller is not based on heuristics. Finally, it is noted that the use of 
5-phase IMs for the actuation of gas compressors is also advantageous, because it achieves higher power and 
torque rates, smoother distribution of power to the phases of the motor, less stressing of the associated voltage 
inverters, and fault tolerance in the case of failure of one or more phases.

No test RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8 RMSEx10

Test1 0.0506 0.0263 0.0320 0.1875 0.0287 0.1320 0.0219 0.5095 0.3467

Test2 0.0508 0.0253 0.0377 0.1726 0.0335 0.1284 0.0247 0.5095 0.3467

Table 1. Tracking RMSE (Root Mean Square Error) for the 5-phase IM-driven gas compressor in the disturbance-free case × 10−3  

5-phase IM, five-phase induction motor.

No test Ts x1 Ts x2 Ts x3 Ts x4 Ts x5 Ts x6 Ts x7 Ts x8 Ts x10

Test1 6.0 5.0 6.0 5.0 0.5 1.0 1.0 6.0 0.5

Test2 7.0 7.0 8.5 7.0 0.5 1.0 1.0 6.0 0.5

Table 3. Convergence times (sec) for the 5-phase IM-driven gas compressor  
5-phase IM, five-phase induction motor.

No test RMSEx̂ 1 RMSEx̂ 2 RMSEx̂ 3 RMSEx̂ 4 RMSEx̂ 5 RMSEx̂ 6 RMSEx̂ 7 RMSEx̂ 8 RMSEx̂ 10

Test1 0.2518 0.2384 0.2607 0.2419 0.2636 0.2426 0.2578 0.0275 0.2379

Test2 0.2491 0.2572 0.2636 0.2446 0.2611 0.2565 0.2486 0.0498 0.2682

Table 2. Estimation RMSE for the H-infinity Kalman filter × 10−6
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